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Pierre Mendes Consultants Ltd. has been commissioned by AA Studios to provide the
associated structural engineering design and documentation for a new pedestrian
overpass on the University of Waterloo campus. This report has been prepared to
showcase the proposed structural engineering analysis.

1.1 Site

1 Introduction

The bridge passes over University Avenue, connecting Carl A. Pollock Hall with the
staircase leading to parking lot A.

Figure 1.1 Google Maps street view of the existing bridge

1.2 Design Constraints
Key constraints imposed by the clients are summarized below.

e /.2 m wide pedestrian walkway

e Must support a load of 10.2 kPa

e Piers must exist at the same locations as existing ones

e No individual structural members can exceed 15 min length

e The bridge must employ a funicular arch shape and/or cable system

1.3 Reference Documentation
The concept design presented in this report is based on the following documentation:
e Structural Elevation drawings prepared by Giffels Associates Limited

Full drawing set found in client's project document (Atkins, 2020).
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2 Proposed Structure

2.1 Schematics

The proposed bridge consists of a series of 4 pairs of crossed arches, spanning 5 "Y"
shaped piers at the same locations as the current supports, with the exception of the
outermost piers, placed near the ends of the overpass.

Figure 2.1 Wireframe of proposed pedestrian bridge design

2.2 Motivation

The motivation behind this concept is twofold: practicality and aesthetics.

Practicality

By keeping the piers at the same location as the previous bridge, we are able to keep
horizontal spanning distances to a minimum. This reduces the scale of our bridge and
increases feasibility. Without any additional support, the horizontal platforms will tend
to deflect downwards at their midspan. This means additional support provided
between the piers could reduce said deflection and redirect the load in the piers.

Aesthetics

For the choice of intermediary structural support to counter midspan deflection, we
decided to go with arches for their clean and modern feel. By slitting the top of the
piers into "Y"s and connecting them to the base of the arches, a sense of continuity
and fluidity is created. The arches are crossed for a more innovative design, and a
pedestrian walkway with a curved roof slides underneath the arches and vaguely
mirrors the shape and feel of the new waterloo ION light rail further down the street.
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The following section outlines the scope of the analysis performed on the proposed
bridge, the key assumptions made in the process, and a summary of the results. For a
more comprehensive walkthrough of the calculation, see Appendix A: Calculation
Package.

3 Structural Analysis

3.1 Scope

This report focuses on four components of the bridge: the arches, cables, beams and
piers.

The goal of this structural analysis is to compute the material properties each
component requires to ensure the safety and longevity of the pedestrian overpass.
Based on these properties, appropriate sizing is determined, and suitable products are
selected from credible sources where applicable, all with a factor of safety of 1.5.

To this end, the following analysis techniques are used.

e (General Cable Theorem

e Maximum Tension in Cable System

e (Cable Sizing

e FEuler's Column Formula

e Buckling and Yielding Failure

e Von Mises Theory of Failure

e Principal of Virtual Work for Deflection and Rotation of Beams
e Maximum Compressive Strength of Arches

e Principal and Maximum In-plane/Out-of-plane Shear Stresses
e Planar State of Stress

3.2 Assumptions

Listed below is a summary of the key assumptions for each bridge component. Details
on the justification or impact of such implications can be found in the step-by-step break
down of the analysis in Appendix A: Calculation Package.

Category Assumptions

Arches Negligible self-weight
Pinned at support and midspan (three pinned)

Lateral bracing between cable connections take all lateral force
generated by cable tension

Cables Negligible self-weight




Beams
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Negligible self-weight

Supported pedestrian traffic and snow loads
Pinned supported at ends

Allowable deflection of span / 300

Piers Negligible self-weight

3.3 Results

Pin-connected to the bridge
All tension is transferred to embedded steel rods

Tabulated below is a summary of the results for each bridge component. For full
calculations, see Appendix A: Calculation Package.

Arches

Material
Cross-section
Outer radius
Thickness

Funicular arch heights

Parabolic approximation
Max thrust**

Max bending moment*
Max shear force**

Max moment of inertia*

structural steel
round HSS

Tout = 88.9 mm
s =6.35mm

h, =2.93m
h, = 440 m

y = —0.07(x — 7.96)% + 4.4
148.87 kN

655.0 kN - m

137.30 kN

I =1.41 x 10 mm*

Cables

Material high strength steel
Cross-section round

Diameter d =20.1mm

Max tension Tnax = 73.96 kN



Beams

Material
Cross-section
Width

Depth
Thickness

Max deflection*
Max rotation**

Planar state stressest

Principal Stresses*

Max in-plane stress

Max out-of-plane stress

structural steel
wide flange

w =102 mm

h =206 mm
s =6.2mm
6. = 6.69 mm
6 = 0.38°

og = 131.06 MPa
Ty =Txz =Tz =0
o,=0,=0

oy = 131.06 MPa

o, = 131.06 MPa
0'2 = 0

Tin = 65.53 MPa
Tout = —65.53 MPa

Piers
Material concrete
Cross-section square

Widths

Max axial loads

Werms = 132.7 mm
Whase = 143.5mm

Pyrms = 638.6 kN
Pyuse = 1030.0 kN

* calculated at mid-span
ok calculated at supports
l measured 100mm below neutral axis
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4 Renders

Figure 4.2 Exterior Render

5 Conclusion

In conclusion, the results generated in this report demonstrate that the proposed bridge
is able to support all required loading scenarios with a factor of safety of 1.5.
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Appendix A: Calculation Package
Legend key finding

Arches
1) Tributary Area

The overall geometry and member sizing of the arches will depend on their
loading. To determine that we first determine the loads each cable is holding
using their tributary area illustrated below.

_ vertical supports _cables tributary area

- -
7 —
— ./

O ° >~ . * O W

O . . . . O l

<«—306m-—><-3.06m—><-306m >« 3.06 m—><—3.06 m >

Figure A.1 Tributary area in typical bridge plan
2) Distributed load

As seen in the bridge plan found in Appendix B: Drawing Package, this flat bridge
area will support a covered pedestrian pathway in the middle, and the edges will
be left outside. Due to the parabolic shape of the covered walkway, snow will
likely slide to the sides and accumulate on the edges. For this reason, we will
assume for precaution that the entire area should be capable of supporting both
snow and pedestrian traffic. We therefore assume a load of 10.2 kPa as per the
client's requirements (Atkins, 2020).

We use this value to calculate the distributed load.

440m kN
= 10.2 kPa X 2.2m = 22.44?

10.2 kPa X

3) Cable supports

Using equilibrium equations to calculate supports.
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y wy, = 2244 kN/m

A TTTTTITT

Ay B
}« 3.06 m >‘
kN 3.06m
Ot YM, =0= (B, x3.06m) + (—22.44? X 3.06m X — )

B, = 34.33 kN 1

kN
™ YE,=0= (—19.8? X 3.06m) + (4,) + (15.147kN)
A, =3433kN 1T
4) Total Load

Each cable is located where two supports of adjacent tributary areas meet. Thus,
the total vertical load supported by each cable will be

Cy = 2 X 3433 kN = 68.66 kN

Now that the loads supported by the cables are known, we begin determining the
funicular shape of the arch.

5) Addressing the diagonal cables

. arches __cables a b
m \ﬂ\ ﬂ /)
X b
a 440m
C/ /H/

< 306m 3.06 m—>~<—3.06 m—><<—3.06 m»%a.os m—»|

Figure A.2 Initial typical bridge plan
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In order to allow space underneath the arches for a pedestrian walkway, the
cables could not be installed vertically directly under their connection points, as
seen in conventional arch bridges. Instead, the base of the cables are attached to
the edges of the bridge as illustrated in Figure A.2 and meet the arches on a
diagonal. This is better understood in a cross-section a-a and b-b illustrated in
Figure A.3.

y

.

Section a-a Section b-b

Figure A.3 Section cuts a-a and b-b

Due to the diagonal tension of the cables, the arches cross sections as observed
in Figure A.3 will be subject to the y-component of the cable tension (calculated
earlier as the vertical cable load) and a horizontal x-component as well. This
additional force component will add significant complexity to the calculations,
requiring us to go beyond the scope of AE205. To avoid this, we add bracing in
the x-direction on the arch at the location of the cable connections. This will
resist the horizontal component of the cables and allow us to assume each point
on the arch at cable attachments will only be subject to the vertical component
of the cable tension.

y

FBD of arch at cut a-a

10
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-+ YE =T, + (_Tx) =0
T+ ZFy = Ty = 68.66 kN

*Note: The above FBD assumes the braces are sized large enough to resist the
horizontal force component of the cable, T,.

See Figure A4 below for the updated typical bridge plan.

Y, arches ~__cables
bl L
\/
% 440 m
) §
(/ /Ii/ \@\ \-) v
< 3.06m 306m »< 3.06 m»\e 3.06 m# 3.06m >

Figure A.4 Typical bridge plan with bracing

6) Changing the reference plane

In order to simply future calculation, we change the reference plane and draw a
free-body diagram of one of the arches looking at it perpendicularly. To
determine the spacing of the cable connections along the arch length, we
calculate the total diagonal length of the arch using the Pythagorean theorem
and divide by 5.

T - x
440 m ,-
< 153 m {
x? = (4.40)? + (15.3)?

x =v19.36 + 234.09
x=1592m
. . 15.92

. connection spacing = = 3.18m

1
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Using this information, we can draw the free-body diagram of the arch in the new
reference plane c-c indicated in Figure A5.

_ arches ~_cables

)

% 318 m»{e 318m >< 3.18m # 318 m% 318 mﬂ

Figure A.6 FBD of an arch on plane c-c
7) General Cable Theorem

Before using the general cable theorem, we must acknowledge that a funicular
arch subject to point loads - such as this one - will have linear members between
the point loads. Note that in our final bridge, the curved arches are accomplished
by placing ornamental cover pieces over the straight members, effectively
concealing the structural system.

12
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68.66 kN 68.66 kN
68.66 kN 68.66 kN

(a)
(b)
68.66 kN 68.66 kN
68.66 kN 68.66 kN
68.66 kN 68.66 kN 68.66 kN 68.66 kN

A[fr | B

LL e (0)
Ff 5@3.18m=159m 44
137.3 kN 137.3 kN

137.3 shear

68.7 (kN)
(d)
-68.7

-137.3

moment

367 2 (kN-m)

(e)

Figure A.7 Applying cable theory to establish funicular shape of arch

13
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First, the funicular shape of the arch is established for our particular loading
scenario in Figure A.7a. The rise of the arch at midspan is set at 4.40m.

We imagine that the set of loads is applied to a cable that spans the same
distance as the arch (Figure A.7b). The sag of the cable is set as 4.40m, the same
height of the arch at midspan. Applying the general cable theory, we imagine that
the loads supported by the cables are applied to an imaginary simply supported
beam with a span equal to that of the cable (Figure A.7¢c). We calculate its
support reactions.

™ YE =0
4% 68.66 kN
-2

We next construct the shear and moment curves. The shear values are found in a
straightforward manner, following the direction of the forces on the beam from
left to right.

Vi =13732kN V,=6866kN V;=0 V,=—-68.66kN Vs=13732kN

A, =B, =137.32kN 1

Noticing the symmetry, only two values of the moment curve are calculated.

M; = 137.32 kN x 3.18m = 436.67 kN - m
M, = 68.66 kN x 3.18m + 436.67 kN - m = 655.01 kN - m

According to the general cable theorem (Leet, Uang, Lanning, & Gilbert, 2018) at
every point,

M=H-h, (A1)
where M = moment at an arbitrary point in the beam
H = horizontal component of support reaction
hz = cable sag at an arbitrary point

Since h = 4.40 m at midspan and M = 655.01 kN -m, we apply Equation A1 at that
point to find H.

M _ 655.01

T h 440
With H established, we apply Equation A1 at 3.18m from A to compute h:.

M 436.67
1™ H " 14887

We also note that h;is at the same height as the midspan, and thus:

= 148.87 kN

=293m

h, = 440m

14
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8) Max Compressive stress in arch

Max compression in funicular arches (Tr) occur at the steepest slope, in this case

at the supports.

}isis m—»

Triangle formed at support A with h;

[y

tan @ = b _ 2'93m—09214

MY =318m 318m

6 =tan"10.9214 = 42.66°
T, = H _ 14887 _ 202.44 kN
F 7 c0s42.66°  cos42.66°

9) Parabolic Approximation

In order to accomplish the curved aesthetic of the arches, a smooth cover will be
placed around the straight members of the funicular structure we solved earlier.
To help reduce material waste, we must find the curve that fits most closely our
structure, creating the tightest fit possible.

For the sake of simplicity, we will assume this curve is parabolic, and thus will be
defined by the following formula.

y=a(x—h)*>+k (A.2)

We let the bottom left corner of the arch represent the origin out our coordinate
system, making the vertex coordinate (7.96, 4.40) m. We sub in these known
points in Equation A.2 and solve for the remaining unknown.

y =a(x—7.96)%+ 4.4
y(0) = 0 = a(~7.96)% + 4.4

~ 4.4
= T Z796)2
a = 0.070

y = —0.07(x — 7.96)% + 4.4

15
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10) Sizing the arch

Since the arch will be primarily subject to compression given its funicular
geometry, the most important failure to avoid is buckling. Thus, this is the failure
mode we will use to size the arch. Euler's column formula described below will be
used.

m2EIl
P, =—= A3
cr (kL)Z ( )
where P = critical force at buckling

modulus of elasticity
moment of inertia
effective length factor
= column length

E
/
k
L

Looking at member AB in Figure A.8, we notice an effective length of 0.7 due to
pin (support) and fixed (weld) connections, and the max compressive force Ts
going through it. This is illustrated as a standalone free-body diagram in Figure
A.9a. Since all other members are made of the same material, are subject to less
load, are shorter, and have equal or smaller effective length factors, we know
from Equation A.3 that this member will buckle at the lowest critical load. Thus,
we use this first arch section for the sizing of all arch members.

« — 5@318m=159m— ]

Figure A.8 Arch diagram with labelled joints and location of T¢

16
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(a) (b)

Figure A.9 FBD of first straight

In order to account for extreme loading scenarios and imperfections in materials
and construction, we implement a factor of safety of 1.5 on all critical loads.

Ty = 202.44 kN
P.. =T; X F.S.
=202.44 X 1.5

P, = 303.66 kN

L =/(3.18)2 + (2.93)2

L=4324m
k=07
E =200 GPa

Given these values and Equation A.3, we find the required moment of inertia for
the arch cross section.

p - m2EIl
cr — (kL)Z
203,66 KN — 72(200 GPa)l

(0.7 X 4.324m)2
I = 1.4094 x 10 mm*

Since the structural members in the arches will be subject to mostly compressive
forces, are curved, and must be relatively light-weight to minimize dead-load,
steel HSS columns were selected as the optimal structural material. Since an

17
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aesthetic cover will be added around the steel, we wanted the cross section to
have a smaller perimeter, to save on material cost. This informed the choice of a
round cross section for the HSS column, illustrated in Figure A.9b.

The Steel Tube Institute resources were used to find a round HSS steel member
capable of generating the required moment of inertia. Properties of the selected
steel member is tabulated below (Steel Tube Institute, 2020).

Name, imperial Fext, MM Thickness, mm Area, mm? [, mm*
HSS3.5X0.25 88.9 6.35 164516 1.411 x 108
Table A.1 Round HSS column properties
11) Checking vielding stress

As an additional measure of precaution, we now check if this cross-section is at
risk of yielding. We do so by calculating the axial force required to cause steel to
yield, which occurs at 350 MPa (Atkins, 2020).

P
O'y = Z
350 MPa = P
= 164516 mm?
P = 5758 kN

Since P> Ty, the structural member will never experience the force required to
cause it to vield.

12) Weight reduction

To appreciate the savings in material and weight associated with the choice of a
hollow structural section, we can use to Equation A.3 to calculate the required
area of a round section made of solid steel. This results in an area of 4208.41
mm?Z. Since area is proportional to weight assuming constant cross-section, we
can calculate the weight reduction as follows.

Anoliow 1645.16

X 100% =
Asoia o = 220841

weight reduction = X 100% = 39%

Thus, by choosing a hollow structural section over solid steel, we save around
39% in cost and weight.

18



Pierre
Mendes
Consultants

With the heights of the cable attachments calculated in Arches step 7, all that is
left to define the geometry of the cables is the depth of their connections,
labelled x; and xz in Figure A10.

~ A —

=

< 306m + 3.06 m >}< 306m >< 3.06m »}« 306m >

|
e

_— |~ 1 L

— > 3.06m

Cables

1) Computing max tension

440 m

6.12 m

\ 4

> 153 m
Figure A.10 Similar triangle for cable connection depths

Using similar triangles:

x; 440m x;  440m
6.12m 15.3m 3.06m 15.3m
x, =176 m x, =0.88m

Combining this information with the vertical force calculated in Arches 4), and
the height of the cable connection established in Arches 7), trigonometry is used
to calculate the max tension in the cables. Cuts a-a and b-b from Figure A.3 are
re-used to display dimensions.

19
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A y
+
X
Ll : € Tlx
440 m :
\*
68.66 kN
y
i‘"‘}
1.76 m
Section a-a
A y
+
X
293 m L, o < T,
+ X
E\TZ
v :
g 68.66 kN
=
<>
0.88 m
Section b-b

Figure A.11 Section cuts and their respective FBD diagrams

Calculating max tension.

L, =442 + 1.762 L, = \/4.4* + 0.882

L, =4.739m L, =4487m
T, _ 4739m T,  4487m
68.66 kN  4.40m 68.66 kN  4.40m
T, = 73.95 kN T, = 70.02 kN

20
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2) Sizing cables

From client requirements, the cables will be made of high strength steel with an
elastic modulus of 200 GPa, and a yield stress of 600 MPa. For safety, both sets
of cables will be sized using the largest load between the two. In addition, a factor
of safety of 1.5 will be applied to the greater tension value.

Steel cable cross-section

T, > T,
o Tax = Ty = 73.95 kN

P =Ty XF.S.=73.95kN x 1.5
P = 110.925 kN

P
oy = 1
110.925 kN
600 MPa = —
A = 184.875 mm?
d?
A = 184.875 mm? = -

d = 15.3mm

Thus, all cables with have a diameter of size 15.3 mm.

21
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Beams

1) Tributary area

N /’ tributary area

440 m

< 306 m»\% 3.06 m% 3.06 m% 3.06 m#B.Oé m»{

Figure A.12 Tributary area and its associated beam

From the Arches calculations step 2, we know that the distributed load associated
with the tributary area illustrated in Figure A12 is 22.44 kN/m.

2) Normal, shear and moment diagrams

To simplify calculations, we will assume that the beam highlighted in Figure A12 is
supported by pin connection on both ends. Consequentially, the deflection
measured in future step might be an overestimate, which is a favorable outcome

for safety.

22
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IR EEEEr

Ay —

normal

(kN)
0 0

34.33 shear

(kN)

-34.33

26.26 moment
—* (kN-m)

IS i
}7 153 m4’7 153 mgj

<«— By

Figure A.13 FBD, normal, shear, and moment diagrams
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(a)

(b)

()

(d)

Starting with the supports, we assume neqgligible loads along the x direction.

3) Deflection at beam mid-span

The following calculation utilizes the principle of virtual work to calculate the

deflection in beam AB shown in Figure A.13a.

23
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wy =22.44 kN/m

ol Ll

A ~—_ 5 - A (2)
<« 153 m4’7 153m— >
3433 kN 3433 kN
1kN
A C l B
S — 5 — (b)
« 153 m4’7 153m- »
0.5 kN 0.5 kN

Figure A.14 P-system (a) and Q-system (b) for displacement

Finding equations for Mg using distance x:

A Aljmw
1 cut’

—> x
V(x)

0.5kN

FromOto153m
O Y My =0 =—-0.5(x) + My(x)
My (x) = 0.5x

1 kN

< 153 m >lc

=y
A cut ’

: (x)
Vix
0.5 kN

A

From153 mto3.06m

OF ¥Myye =0=-0.5(x) + My(x) + 1(x — 1.53)
My (x) = 0.5x

24
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Finding equations for Mp using distance x:

wy = 2244 kN/m
bl

4 / l ) M,(x)
0 cut

— ¢
V(x)
34.33 kN

FromOto153m

kN X
O Mo, = 0= (22.44?-9( : E) + (=34.33 kN - %) + Mp(x)
M, (x) = 34.33x — 11.22x2

wi =22.44 kN/m

Voo

A ] l ) M)
A c cut

> x
V(x)

0.5kN

}«; 153 m*ﬂ

From153 mto3.06m

kN X
Ot YM., =0= (22.44?-x . E) + (—34.33 kN - x) + Mp(x)
Mp(x) = 34.33x — 11.22x2

Using the principal of virtual work and subbing in values of Mg and Mp:

L
M, M
Q-6c= ZJ QEI P dx
0

1.53
5. = (0.5x)(34.333x — 11.22x2) p
Q-6c= f El X
0
3.06
(1.53 — 0.5x)(34.333x — 11.22x2)
+ f dx
El
153

25
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1.53
1
Q-6 = I f 17.167x% — 5.61x3 dx
0

3.06

1
+ 5 f 52.529x — 17.167x% — 17.167x% + 5.61x3 dx

1.53

1 1
Q- 8c = - [5.722x° — 1.403x"15%% + - [26.265x” — 11.444x> + 1.403x*13 95

1
Q- 6c = [12.809]

1
[(245.93 — 327.90) + 122.967) — (61.483 — 40.988 + 7.685)]

TE
(1D)-6; = l[12.809] + l[12.817]
El El
5, = 25.626 kN - m?3
Elyeam

We allow a deflection 300" of the length of the beam span.

span
5 =
¢~ 300
_ 3060mm — 102
c = 300 = .mm

Using this deflection value in out PVW equation, we can solve for the beam's
required moment of inertia.

25.626 kN - m?3
N
(200'000 W)(Ibeam)

2.5626x10%3 N - mm?3

Ipeam = N
(200,000 )(10.2mm)

(10.2mm) =

mm?

Ipeam = 1.256x107mm*

Implementing a factor of safety of 1.5 we get

Ipeam = 1884 cm*

26
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The Engineering Toolbox was used to find a wide-flange steel beam capable of
generating the required moment of inertia. Properties of the selected steel
member is tabulated below (Engineering Toolbox, 2008).

Name, imperial Width, mm Height, mm Thickness, mm Area, cm? I, cm?

W8X4X15 206 102 6.2 28.6 2004

Table A.2 Wide-flange steel beam properties

< width —>|

Figure A. 15 | beam dimensions

4) Rotation at one end of the beam

y
—+ A c B
X — — — — 1kN-m
A 86— A
< 153 m 153 m »
Ay Y

Figure A.16 Q-system for rotation
Calculating supports.

O ¥M,=0=1kN -m+ (B, x3.06m)
B, = —0.327 kN = 0.327 kN |

™ YE, =0=-0327kN + 4,
A, = 0327 kN 1

Finding equations for Mg using distance x:

27



B
M (x) CTF\I jlkN-m
o “—cut X<_l

Vi
(8 0327 kN

FromB,0to153m

O YMey =0=1kN-m— My(x) + (—0.327x)
My(x) = 1—0.327x

c “«——153m——>

M, CT - | ’9 LkN-m

Ve X<—l

0.327 kN

FromB, 153 mto 3.06m

OF YMey =0=1kN-m— My(x) + (—0.327x)
Mg (x) = 1 - 0.327x

Finding equations for Me using distance x:

wy = 2244 kN/m

Voo
weo (6= : (ﬂlB

V(x)

3433 kN

FromB, 0to153m

kN X
Ot YM., =0= (—22.44; ' X E) + (34.33 kN - x) — Mp(x)

Mp(x) = 34.33x — 11.22x2

wy =22.44 kN/m

Vober b
M, CT — : 4

V(x)

B

3433 kN
‘« 153 m

FromB,153mto 3.06 m
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kN X
O YM., = 0= (—22.44? . x 'E) + (3433 kN - x) — Mp (%)
Mp(x) = 34.33x — 11.22x

Using the principal of virtual work and subbing in values of Mq and Me:

Q6 = ZfQM”

' (1 — 0.3268x)(34.333x — 11.22x2)
Q-0 = j = dx

0

06
(1 — 0.3268x)(34.333x — 11.22x2)

I dx

1.53
1.53

1
Q b= % J 34.333x — 11.22x% — 11.22x* + 3.667x> dx
0
3.06

1
+ 5 j 34.333x — 11.22x% — 11.22x% + 3.667x3 dx
1.53

1
Q-6 = 4 —[17.167x% — 7.48x% + 0.917x*]§">3
1
+ = [17.167x2 — 7.48x% + 0.917x*]3:2§

1 1
Q-6 = [18 418] + E[Z6 .801 — 18.418]

26.800 KN? -m 1000

(AN = (200 kN D )(2.004x107mm*) (1x10°)(1x107%)¢

G = 6.687x1073 rad

5) Planar state of stress

As requested by the client, planar state stress will be evaluated at 100 mm below the
neutral axis. We inspect the internal forces in the beam by taking a cut at midspan,
illustrated in Figure A17.
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- e l M
14

> X

~ mid-span cut

Figure A.17 Internal forces of I-beam at mid-span

?

| kN
N. A
— - 1 - 206 mm
100 mm
| + |y,

}% 102mm—>{

Figure A. 18 |-beam cross-section

Section Properties Mmia = 26.27 KN-m
Vmia = O kN
c =100 mm
E =200 GPa
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Calculating bending stress.

] Mc
Bending Stress = T

(26264700 N-mm)(100mm)
N 2.004x107mm4

oz = 131.06 MPa

Op

A positive moment will generate tension at the bottom of the beam.

Calculating shear stress.

Shear Stress = —
It

As observed in Figure Alc, the beam experiences no shear at its mid-span. Thus,
shear stress will be O.

Ty = 0 kN
Summarizing stresses orthogonal to frame of reference.
Ty = Txz = Tzy = 0 kN
oy, =0, =0kN
o, = 131.06 MPa

Calculating the principle stresses at the mid-span of the beam.

oy + oy Ox — 0y 2
o =— +j( 5 )+Txy2

%1 2 2
o, = 131.06 MPa

Oy + O Oy — Oy\2
%" y_J( Y) +

_ (131.06) + (0) N j<131.06 - 0)2 + (02

2 2
131.06) + (0 131.06 — 0\?
oy = SO O (IS0,
2 2
o, = 0 MPa
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6) Maximum in-plane / out-plane stresses

Ox — Oy\?2
— 2
Tmax in—-plane — \/( 2 ) + Txy

131.06 — 0)° ,
Tmax in-plane = (T) + (0)

Tmax in-plane = 65.53 MPa
Tmax out—-plane = —65.53 MPa

7) Von mises theory of failure

Gyz > 0,2+ 0,2 — 0,0,

Where,
o, = 131.06 MPa
6, = 0 MPa
o, = 350 MPa
(350)2 > (131.06)2 + (0) — (131.06)(0)
122500 MPa? = 17176.72 MPa?

Therefore, yielding will not occur.
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Piers
1) Pier design

How the load will travel:

i.  Cables hold up the weight (UDL) generated on the deck
ii.  Arch carries this load and passes it along the parabolic length
lii.  Beams at ends support the arches
iv.  The piers will carry 2.5 beams on either side, therefore 5 beams in total
get passed into the pier

) — load path—

I |

[ S
™~

——

\x\\
i
%‘7 deck — B

i
==

~round HSS

\ - arms
\ T concrete
X { structure
N | joint
Lot T aesthetic— n
\m " cover
base

Figure A.19 Pier design diagrams

Arch supports (A,) =171.665 kN

Since there are two arches coming to one side of pier, therefore the beam across
pier will double:

A, =343333kN T
B, = 343.333 kN T

Therefore, the pier fork is simplified to a "Y" shape and will have a moulding
around it to match the parabolic arch for aesthetic reasons.
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343.33 kN 343.33 kN

U
i

I
L

% 22m-—><—22m >‘

Figure A.20 External loads acting on piers
The pier will entirely made of Concrete

E =17 GPa
f'c =50 MPa

The cross-section will be square to facilitate construction.
2) Avoiding buckling in pier arms.

Calculating length of arm.

L= +3%2+222

L= 3.720m
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343.33 kN

y 34333 kN

(a) (b)
Figure A.21 Left-arm diagram (a) left-arm FBD (b)

Calculating angle theta.

6 = tan™! 3
= n —
2.2
6 = 53.75°
Computing axial loading.
F, _ 343.33kN

FAxial = F = 4‘25733 kN

- cos(90° — ) cos 36.25
E, = F cos 8 = (580.626 kN) cos 53.75° = 251.740 kN

Given a pin-fixed connection, the effective length factor will be O.7. Using this
information and Equation A.3, we determine the minimum moment of inertia
required to avoid buckling. A safety factor of 1.5 is applied first.

P, =FXF.S.
P, = 425733 X 1.5
P., = 638.599 kN

m2EIl
for = Gy?
2(17 000 MPa)(I)
(0.7 -3720mm)?
I = 2.581 x 10”mm*

(638599 N) =
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With this moment of inertia, the column will only buckle at a critical load 1.5 times
greater than the maximum axial load it should ever be subject to.

3) Avoiding buckling of pier base

686.66 kN

ZxF

1 y F Y F
%+ 5

< \ E /
v
I > O €------- Fy

b || b I
G
(a) (b)

Figure A.22 Pier diagram (a) pier FBD (b)

Given a fixed-fixed connection, the effective length factor will be 0.5. Using this
information and Equation A.3, we determine the minimum moment of inertia
required to avoid buckling, A safety factor of 1.5 is applied first.

G = 34333 x 2
G = 686.66 kN
P, =GXF.S.

P, = 686.66 kN x 1.5
P, = 1029.99 kN

m2El
PCT = (kL)Z
m2(17 000 MPa)(I)

(0.5 x 2800mm)?
[ =1.203 x 10’mm*

(1029990 N) =

With this moment of inertia, the column will only buckle at a critical load 1.5 times
greater than the maximum axial load it should ever be subject to.
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4) Sizing the structural members of the pier.

The a-a and b-b cuts from Figure A.21a and Figure A.22a respectively are
illustrated below.

. ] |
|

(a) (b)

Figure A.23 Pier cross-section of the arms (a) and base (b)

Using the calculated moment of inertia, we size the arm and base of the pier.

w,* w4

[=-2 [=-2

12 12

4 4

2.581 x 107) = —= 1.203 x 107) = —

(2.581 x 107) = =% (1.203 x 107) = =%
w, = 132.7mm wp = 109.6 mm

Before confirming these dimensions, we determine the dimension requirements
to avoid yielding and select the greatest of the two. A concrete compressive
strength of 50 MPa (Atkins, 2020), and the critical load from the previous step is
used to determine required yielding dimensions.

P, P,
638.599 kN 1029.99 kN
50 MPa = ——— 50 MPa = ————
Wqa Wp
w, = 113.0 mm wy = 143.5mm

The arms will buckle before they yield, thus the first calculated dimensions can be
kept. However, the base will actually yield before it buckles, and thus its
dimensions will be governed by yielding failure instead.

All'in all, the arms must have a cross-section greater than 132.7 mm x 132.7 mm,
while the piers must be greater than 143.5 mm x 143.5 mm in size.
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Appendix B: Drawing Package

All
Al.2
A2

Drawing Set

North-East Structural Elevation
Section Elevation
Structural Top View Plan
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